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Principal orbits and the Yang-Mills-Higgs model 
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CERN, CH-1211 Geneva 23, Switzerland and IHES, 91440 Bures-sur-Yvette, France 

Received 3 August 1982 

Abstract. We give a strong necessary condition for the principal stabiliser of the action 
of a compact Lie group to have a non-zero centre. An application to the monopole 
problem in Yang-Mills-Higgs models is discussed. 

1. Introduction 

In this paper we give a strong necessary condition on any linear representation A of 
a compact Lie group G such that the principal stabiliser of A has a non-zero centre. 
For the unitary and orthogonal groups we then list all representations (reducible and 
irreducible) which have non-zero centres for their principal stabiliser. 

By relating the centre of the Lie algebra of a stabiliser to the second de Rham 
cohomology of the corresponding orbit we can apply the result mentioned above to 
the monopole problem in grand unified models. That is, we can then list all such 
Yang-Mills-Higgs (YMH) models (see e.g. Jaffe and Taubes 1980), with gauge fields 
valued in the Lie algebra of G and Higgs fields valued in the carrier space of A, for 
which fundamental isolated monopoles are possible in the model (we will elaborate 
on this intuitive terminology later). 

To give the contents of the paper precisely, we first explain the notation we will 
use (Kobayashi and Nomizu 1969). Let M = R3 and P = M x G be a trivial principal 
fibre bundle over M with G being a simple, compact, connected Lie group. The 
bundle projection is 7 : P  3 ( x ,  g ) + x  E M  and the group action on P is g * ( x ,  g’) = 
( x ,  g’g), for all ( x ,  g ’ )  E P, g E G. Let A be a linear, orthogonal representation of G 
(not necessarily irreducible) on the real finite-dimensional vector space E i ,  the scalar 
product on E being denoted by (-, .), and let 8 = M x E be the vector bundle associated 
with P, with the group action being defined by A. We let 9 be the Lie algebra of G 
and by Ad we mean the adjoint representation of G on 9. The representation of 9 
on E induced by A we denote by 8 and the adjoint representation of 9 we denote 
by ad. For any x E E, G, (<G) represents the stabiliser of x ,  G ( x )  the orbit through 
x and S ( x )  the stratum containing x (Michel 1972, 1979, 1980) ( G ( x ) c S ( x ) c E ) .  
For the tangent plane to G ( x )  at x ,  the tangent plane to S ( x )  at x and the normal 
plane to G ( x )  at x we write: p ( x ) = x + p ’ ( x ) ,  v ( x ) = x + v ‘ ( x )  and K ( x ) = x + K ’ ( x ) ,  
respectively, where p ’ ( x ) ,  v ‘ ( x )  and K ‘ ( x )  are vector subspaces of E such that p ’ ( x ) =  
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T,(G(x)) ,  v ' ( x )  = Tx(S(x) )  and K ' ( x )  = p ' ( x ) l .  The various strata of E may be partially 
ordered via the partial ordering on the conjugacy classes of subgroups of G. There 
exists a minimal stratum, So, with respect to this ordering and So is open and dense 
in E. Any orbit in So is an orbit of maximal dimension and is called a principal orbit, 
and the stabiliser of any point of So is a stabiliser of minimal dimension and called a 
principal stabiliser. In the YMH model we are given a connection on P (the gauge 
fields) and a tensorial 0-form C$ on 8 (the Higgs field). 

In D 2, we give the relation between the second de Rham cohomology space of an 
orbit and the centre of the Lie algebra of the corresponding stabiliser. In 0 3, we 
establish a strong necessary condition on 8 such that the Lie algebra of the principal 
stabiliser has a non-zero centre and we then list the principal stabilisers for all 
representations A where G is a unitary or orthogonal group. In 0 4, we consider the 
application of the result of D 3 to the monopole problem in the YMH model. 

2. On the second de Rham cohomology of an orbit 

Since G ( x )  may be identified with the coset G/G, ,  H L R ( G ( x ) )  is given if we know 
H k R  ( G / H )  for any subgroup H of G .  

H k R ( G / H )  may be expressed in terms of algebraic properties of G and H by 
elementary methods (Spivac 1975). Let X denote the Lie algebra of H and C(R) 
its centre ( C ( X )  = {X E Xl[X,  Y ]  = 0, for all Y E  X}), and let Ho be the subgroup of 
H which is path connected to the identity and is of the same dimension as H. Then 
Ho is a normal subgroup of H and the factor group H/Ho is a finite group which acts 
naturally on C(X) through Ad. Writing C(X)H 'Hn  = C ( X ) H  = {X E Re(Ad(h)X = X ,  
for all h E H }  we have 

HLR ( G / H )  -- C(X)H"Hn.  (2.1) 

It follows from equation (2.1) that a necessary condition for HkR ( G / H )  f 0 is 
C(X) # 0. It would be desirable to know for all representations A what the stabilisers 
H are such that C(X) f 0. This, though, would be too large a project to undertake 
from the general standpoint and we shall not do so. However, when H is a principal 
stabiliser, i.e. a stabiliser of a point in the generic stratum, it is possible, quite generally, 
to decide for which representations C(X) f 0, and in the next section we will address 
this question. 

3. On principal orbits 

The main result of this section, stated in theorem 3.2, is a strong necessary condition 
on a representation S of % such that the Lie algebra of a principal stabiliser, X, has 
a non-zero centre C ( X ) .  

Since A is a real orthogonal representation of G it follows that S ( Y )  is skew- 
symmetric for all Y E %, i.e. ( x ,  S (  Y ) y  ) = -(a( Y ) x ,  y ) for all x ,  y E E, and that S (  Y l 2  
is a linear self-adjoint transformation for all Y E  %. Noting that % is a simple Lie 
algebra and letting tr denote the operation of taking the sum of all the eigenvalues 
of a self-adjoint linear transformation, we have that 

(3.1) ds = tr 8 (X)'/tr ad(X)2 > 0, 
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called the index of the representation S of 59, and defined for any non-zero X E %, is 
independent of X (Andreev et a1 1967)t. 

For any subalgebra X of 59 and for all X E 2 we can block diagonalise ad(X), i.e. 

ad(X) = adz(X)Obu(X)  (3 .2)  

corresponding to the decomposition 59 = XmX’. Here adz denotes the adjoint 
representation of 2. If X is the Lie algebra of the stabiliser of a point x E E then E 
may be decomposed as 

(3 .3)  

where p ’ ( x ) ,  v ’ ( x )  and K ’ ( x )  are the vector spaces defined in § 1. With respect to this 
decomposition, S ( x )  for each X E X may be written in block-diagonal form 

(3 .4)  

where S,,,,,(X)y =S(X)y  for all y E ~ L ‘ ( x ) ,  S.,,,,(X)y -S(X)y for all y E v ’ ( x )  and 
S(X)y = 0 for all y E v ’ ( x )  n ~ ’ ( x ) .  

The linear mapping XL 3 X + S ( X ) x  E ~ ’ ( x )  is a vector space isomorphism (2 
being the Lie algebra of Gx). Also, since for any X E 2, S,-lx,(X)2 and bu(X)’ are 
self-adjoint, it follows that S , S ( ~ ,  (X)’S( Y)x = AS( Y)x iff ad(X)*Y =AY, where Y E  
2’. Hence we have the following result. 

E = p ’ ( x )  0 ( v ’ ( x )  n ~ ’ ( x ) )  0 ~ ’ ( x ) ’ ,  

S (X) = S (XI 0 0 0 S ” ‘ (X  ) - (XI 

Proposition 3.1. For anyX E X, the Lie algebra of the stabiliser of x E E, tr S, ‘ , x ,  (X)’ = 
tr ba(X)’. 

Noting that v’(x)’ = 0 if x is in the generic stratum of E, we may write 

ds = tr bu( Y)’/(tr bu( Y)’+ tr ad2( Y)’) (3 .5 )  

for any non-zero Y E  2 if 2 is the Lie algebra of the principal stabiliser G, (sssuming 
X Z O ) .  

Theorem 3.2. If the Lie algebra, 2, of a principal stabiliser of the representation S 
of 9 on E is non-zero, then da s 1 and ds < 1, = 1 respectively implies that 2 is 
non-Abelian, or Abelian. 

Proof. If 3! is non-zero then from equation (3 .5)  ds s 1. If now ds < 1, then from 
equation (3 .5 )  tr ad%(Y)’ is non-zero for any Y E  2, Y # 0. Thus [X, Y] # 0 for all 
X E X. Finally, if ds = 1 then tr adz( Y)’ = 0 for all Y E  X, in which case [X, Y] = 0 
for all X, Y E  2. 

It follows from this theorem that corollary 3 .3  is valid. 

Corollary 3.3. Let % b e  the Lie algebra of a principal stabiliser of the representation 
S of 9 on E. If dg = 1 then C ( 2 )  = 2 and if da # 1 then C ( 2 )  = 0. 

Let us make some remarks on the above analysis. If 6 is written as a sum of 
irreducible representations SI, i.e. S = @,SI and if ds, denotes the index of 6, then 
ds = C, cis,.  Thus to know the index of any finite-dimensional representation of a simplg 

f In fact d6 is a rational number (Andreet el a1 1967). 
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Lie algebra we need know only the index for all its finite-dimensional, irreducible 
representations. Moreover, if the Lie algebra is semi-simple then we may apply the 
above analysis to each of its simple components. In the case of the adjoint representa- 
tion dad = 1, and the Lie algebra of a principal stabiliser (which is equal to its centre) 
gives a Cartan subalgebra of (B. The index ds, given by equation (3.1), is defined for 
a real representation S. It is possible that S may be equivalent to a complex representa- 
tion p, say, in which case a similar expression to equation (3.1) can define a different 
index do, which is related to the former one by ds = 2do (Andreev ef a1 1967). 

Because of the strength of the necessary condition in corollary 3.3, and because 
of the comments following the corollary, it is reasonable to try, in connection with 
equation (2.1), to determine all representations for which the Lie algebra of a principal 
stabiliser, X, has non-zero centre C ( X ) .  We do this now for all unitary and orthogonal 
groups. In addition, we give H, X and C(X)H'Ho.  

First we must determine for what real orthogonal, irreducible representations 
A, ds s 1. Referring to Andreev et al (1967) we give this list of representations in 
table 1. We use Lie algebra terminology. The basic representations pi correspond to 
a system of primitive roots (Hsiang and Hsiang 1970). (Note that the representations 
are real irreducible.) Since the index of any real representation is equal to the 
sum of the indices of all its irreducible factors we can, from table 1, determine all 
real orthogonal representations of the groups involved which have index 1. We list 
these representations in table 2. From corollary 3.3 we know that only these real 
orthogonal representations can have C ( X ) # O ,  where X is the Lie algebra of a 
principal stabiliser, and by equation (2.1) this is necessary for the second de Rham 
cohomology of a principal orbit to be non-zero. It is straightforward but very tedious 
(we omit details) to check directly what are the corresponding principal stabilisers for 
these representations (the paper by Hsiang and Hsiang (1970) is only of partial use 
for this task)?. In table 2 we also list these principal stabilisers, H, their Lie algebras 
X and C(R)H'Hn. (T' denotes the k-dimensional torus and Rk its Lie algebra.) We 
have not included in tables 1 and 2 the adjoint representation because, for that case, 
we always have d a d  = 1 and the Lie algebra of the principal stabiliser, X, is equal to 
C(R) and is a Cartan subalgebra. 

4. Physical application 

We now consider how the results of the previous section may be useful for the 
monopole problem in YMH models. In order to discuss this we first need to develop 
the notion of a topological current as the pull back of an element of H k R ( G ( x ) )  
under the Higgs field and a deformation retraction. 

For any x E E it is known (Michel 1972, 1979, 1980) that there exists a neighbour- 
hood V, of x such that K ( x ) ~  V, cuts G ( x )  at x only and that U, = G ( K ( x ) ~  V,)  
( = Uy.K(x,nVx G(y)) is open. The map r : U, + G ( x ) ,  defined by sending every element 
of K ( x )  n V, to x and satisfying r ( A ( g ) y )  = A ( g ) r ,  for all y E K ( x )  n V, and g E G is a 
deformation retraction and U, is a tubular neighbourhood of G ( x )  with fibre map r.  
Moreover, if A is an open set in E such that it contains the orbit of every one of its 
elements, and if there exists a point x in E and a set U, of the form specified above 
with U, I A ,  then A is also a tubular neighbourhood of G ( x )  with fibre map r. It may 

f For the spin groups we have found the article by Hermann (1974) most useful. 
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Table 2. We list all real orthogonal representations (reducible or irreducible; omitting 
the adjoint representation), which have index 1 and that can be constructed from table 
1, together with a corresponding stabiliser H (they are all conjugate), its Lie algebra 2 
and dim C(Yf)H’Ho. 

Type Representation A Group G 2 H dim C ( 2 ) H ’ H o  

SO(2r-1-1) R TI 1 
Spin(5j 0 

0 
0 

0 
0 
0 
0 

0 
0 

Spin( 11) 0 
0 

Spin(l3) 0 

Spin(7) 0 

Spini9j 0 

be remarked that any A above is a tubular neighbourhood of G(0) = (0). However, 
the choice x = 0 is a trivial one and only cases where G(x) Z (0) will be of interest. 
In the case where A = Ad and E = 9 the constructution of these tubular neighbour- 
hoods has been given by Houston (1983). In general, the construction of these tubular 
neighbourhoods will be highly dependent on the representation A. However, for an 
arbitrary representation almost all A are contained in the generic stratum So because 
it is open and dense in E, and hence any such A is a tubular neighbourhood of any 
of its orbits (since we may choose V, = U, = S O ) .  

Letting U O :  M 3 y + ( y ,  1) E P define a section of P, we can define the map cpo = 
cp oco : M  +E.  Let fi be a submanifold of M of the same dimension as M such that 
there exists an open set A in E containing the orbit of all of its elements which is a 
tubular neighbourhood of G(x), for some X E A ,  with fibre map r and such that 
cpo(A?) CAP. By composing the restriction of cpo to A?, cpolni, with r we obtain the map 

+ For re6sonably behaved Higgs fields q, (So) is dense in M and such a manifold &f c qO1 (So) exists. 



Principal orbits and the Yang-Mills-Higgs model 1123 

(p' = r o ( p o l . l i : f i  + G ( x ) .  The induced mapping on cohomology Cp* : H h R  ( G ( x ) )  + 

H h R ( M )  allows us to pull back the generators of H k R ( G ( x ) )  to define closed 
two-forms (conserved currents) on G. These conserved currents may be considered 
as generalising the 't Hooft field strength ('t Hooft 1974). 

Now let us briefly discuss how the above conserved currents may be used to count 
the monopoles' charges, i.e. how they may be used to associate intdgral charges to a 
closed two-cycle in fi (i.e. a closed, simply connected, oriented, two-dimensional 
manifold in fi) giving the topological charges inside it. Let N be a two-cycle in A? 
(fi, A ,  G ( x )  and 6 as above); then [NI? generates H2(N, Z) = Z. The restriction of 
the map 4 to N,  (FIN : N  -+ G(x)  induces the following mapping on homology 
$I&: H2(N, H)-+H2(G(x) ,  Z). By letting {[yi]li = 1 , .  . . , a }  be an orthonormal basis 
for H k R  ( G ( x ) ) t  we may associate a set of integers to N using cp by writing 

(4.1) 

where a = dim H ~ R  ( G ( x ) ) .  Moreover, the integers n, (N) ,  i = 1, . . . , a are unchanged 
by deforming N, cp to N ' ,  cp', as long as G ' ~ N , [ N ' ]  = &[NI. In the particular case where 
we deal with finite-energy configurations of the YMH model with the usual sort of 
Lagrangian being employed, i.e. with a typical spontaneous symmetry-breaking Higgs 
potential, and where N = Si = { x  €MI ,  Ix I = R } ,  for sufficiently large R, the integers 
{ n z ( S i ) }  become part of the boundary condition (Schwarz 1976). 

In  the case of YMH models with the Higgs field valued in the adjoint representation 
it is possible to have isolated fundamental point-like monopoles. By this we mean 
that, if xOe R3 is an isolated zero of cp, and for all points x # x o  in a sufficiently small 
neighbourhood of x o ,  ~ ( x )  is valued only in the generic stratum So, then we can 
associate, via equation (4. I), monopole charges to x o ,  using a sufficiently small closed 
two-cycle surrounding x u .  (In fact, the number of such charges will equal the rank 
of G in this case.) Here the term fundamental refers to the generic stratum and by 
isolated we are referring to the fact that no lines (or surfaces) of degeneracy of cp (i.e. 
cp ( x )  & So) leaving xo can occur. We can have, then, such fundamental isolated 
monopoles for the adjoint representation because the second de Rham cohomology 
of a principal orbit is isomorphic to a Cartan subalgebra. For more general types of 
YMH models used in grand unified theories the occurrence of fundamental isolated 
monopoles depends on whether or not the second de Rham cohomology of a principal 
orbit is zero. With the results of 9 3 we can decide which models (i.e. which groups 
G and representations A) can possess fundamental isolated monopoles. In particular 
for G being a unitary or orthogonal group this information is supplied in tables 1 
and 2. 

Acknowledgments 

I would like to thank V Kac and especially L Michel for much help throughout the 
course of this work and in particular with 9 4 .  Financial support is gratefully acknowl- 
edged from the Institut des Hautes Etudes Scientifiques (IHES), Bures-sur-Yvette, 
and CERN, Geneva. Lastly, I have benefitted from discussions wit4 J Bernstein at 
the IHES and R Coquereaux, M Gunaydin and R Stora at CERN. 

t [ ' 1  denotes homology or cohomology class as appropriate. 
$ 'The inner product is defined by integration, i.e. H*( * 1 x H 2 (  * )  ( [ C ] ,  [y]+ Jr, E R). 



1124 P Houston 

References 

Andreev E, Vinberg E and Elashvill A 1967 Funktsional’nyi Analiz i Ego Prilozheniya 1 3 
Hermann R 1974 Spinors, Clifford and Cayley Algebras, Interdisciplinary Mathematics vol VI1 
’t Hooft G 1974 Nucl. Phys. B 79 276 
Houston P 1983 J. Math. Phys. to be published 
Hsiang W-C and Hsiang W-Y 1970 Ann.  Math. 92 189 
Jaffe A and Taubes C 1980 Monopoles and Vortices (Boston: Birkhauser) 
Kobayashi L and Nomizu K 1969 Foundations ofDiferentia1 Geometry vols 1, 2 (New York: Wiley) 
Michel L 1972 Statistical Mechanics and Field Theory ed R N Sen and C Weil (Jerusalem: Israel University) 
- 1979 Coll. in Honour of Antoine Visconti, Marseilles, 5-6 July 1979 
- 1980 Rev. Mod. Phys. 52 617 
Sehwarz A 1976 Nucl. Phys. B 112 358 
Spivac M 1975 A Comprehensive Introduction to Differential Geometry vol 5 (Berkeley, CA: Publish or 

Perish) 


